Rates and roles of cyclic and alternative electron flow in potato leaves.

نویسندگان

  • Agu Laisk
  • Hillar Eichelmann
  • Vello Oja
  • Eero Talts
  • Renate Scheibe
چکیده

Measurements of 810 nm transmittance changes in leaves, simultaneously with Chl fluorescence, CO(2) uptake and O(2) evolution, were carried out on potato (Solanum tuberosum L.) leaves with altered expression of plastidic NADP-dependent malate dehydrogenase. Electron transport rates were calculated: J(C) from the CO(2) uptake rate considering ribulose-1,5-bisphosphate (RuBP) carboxylation and oxygenation, J(O) from the O(2) evolution rate, J(F) from Chl fluorescence parameters and J(I) from the post-illumination re-reduction speed of PSI donors. In the absence of external O(2), J(O) equaled (1.005 +/- 0.003) J(C), independent of the transgenic treatment, light intensity and CO(2) concentration. This showed that nitrite and oxaloacetate reduction rates were very slow. The Mehler-type O(2) reduction was evaluated from the rate of electron accumulation at PSI after the O(2) concentration was decreased from 210 to 20 mmol mol(-1), and resulted in <1% of the linear flow. J(F) and J(I) did not differ from J(C) while photosynthesis was light-limited, but considerably exceeded J(C) at saturating light. Then, typically, J(F) = 1.2 J(C) and J(I) = 1.3 J(C), and J(F) -J(C) and J(I) -J(C) depended little on CO(2) and O(2) concentrations. The results showed that the alternative and cyclic electron flow necessary to compensate variations in the ATP/NADPH ratio were only a few percent of the linear flow. The data do not support the requirement of 14H(+)/3ATP by the chloroplast ATP synthase. We suggest that the fast PSI cyclic electron flow J(I) - J(C), as well as the fast J(F) - J(C) are energy-dissipating cycles around PSI and PSII at light saturation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow.

Ferredoxins (Fds) are ferrosulfoproteins that function as low-potential electron carriers in plants. The Fd family is composed of several isoforms that share high sequence homology but differ in functional characteristics. In leaves, at least two isoforms conduct linear and cyclic photosynthetic electron transport around photosystem I, and mounting evidence suggests the existence of at least pa...

متن کامل

Biosynthesis of Silver Nanoparticles Using Leaves of Acacia Melanoxylon and their Application as Dopamine and Hydrogen Peroxide Sensors

In this work, we described a cost-effective and environmentally friendly technique for green synthesis of colloidal silver nanoparticles from aqueous extract of fresh leaves of Acacia melanoxylon and its application as a dopamine and hydrogen peroxide sensor. The prepared silver nanoparticles were characterized by UV-Visible absorption spectroscopy, X-ray diffraction (XRD), scanning electron mi...

متن کامل

Transient Expression of Human Growth Hormone in Potato (Solanum tuberosum), Tobacco (Nicotiana tobacum) and Lettuce (Lactuca sativa) Leaves by Agroinfiltration

Using agro-infiltration technique, we have transiently expressed human Growth Hormone (hGH) in tobacco(Nicotiana tobacum), potato (Solanum tuberosum) and lettuce (Lactuca sativa) leaves. Out of three differentinoculation times used for infiltration in our study, it was seen that highest level of hGH expression wasachieved when leaves were infiltrated for 35 min. The presence o...

متن کامل

Variation potential influence on photosynthetic cyclic electron flow in pea

Cyclic electron flow is an important component of the total photosynthetic electron flow and participates in adaptation to the action of stressors. Local leaf stimulation induces electrical signals, including variation potential (VP), which inactivate photosynthesis; however, their influence on cyclic electron flow has not been investigated. The aim of this study was to investigate VP's influen...

متن کامل

Cyclic electron flow around photosystem I in C(3) plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex.

Cyclic electron flow around photosystem (PS) I has been widely described in vitro in chloroplasts or thylakoids isolated from C(3) plant leaves, but its occurrence in vivo is still a matter of debate. Photoacoustic spectroscopy and kinetic spectrophotometry were used to analyze cyclic PS I activity in tobacco (Nicotiana tabacum cv Petit Havana) leaf discs illuminated with far-red light. Only a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 48 11  شماره 

صفحات  -

تاریخ انتشار 2007